w^2+5=25

Simple and best practice solution for w^2+5=25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for w^2+5=25 equation:



w^2+5=25
We move all terms to the left:
w^2+5-(25)=0
We add all the numbers together, and all the variables
w^2-20=0
a = 1; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·1·(-20)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*1}=\frac{0-4\sqrt{5}}{2} =-\frac{4\sqrt{5}}{2} =-2\sqrt{5} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*1}=\frac{0+4\sqrt{5}}{2} =\frac{4\sqrt{5}}{2} =2\sqrt{5} $

See similar equations:

| 4x+-16=180 | | 108+36+x=180 | | 2x-4+5x=16-8x | | 3(x-4)+4(4x+5)=34 | | 2x^2+2x-425=0 | | (2^(2x))-3.2^x+2=0 | | -3x+-2x+x=x+6 | | 45+9y=0 | | -31=x-15 | | 6k+2k=-86+14 | | 50x+8=88 | | 8b=b+-7 | | 14x+5=9x-5 | | 2(x+3)=3(x+2 | | 3x-7-2x+5=6 | | 2x-2/x-4=2/3 | | 4x*3+6x*2-24x+14=0 | | {7.4x+23/21=1+0.4x | | −5(z+1)=−2(z+5) | | 5x-3+9x-9=114 | | 3(3z-2)-2(5z-4)=24 | | (2x-3)^2=49 | | 2n=n+12 | | -90=40+10b | | -90=-40=+10b | | 7-3/2x=12+-5/3x | | -30=30=5a | | -5/3x+12=3/2x-7 | | x/7=3x/15 | | 360=8x+280 | | x+2(4–x)=2x+6–3x | | 2x=5+13x |

Equations solver categories